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ABSTRACT 

  Pavement roughness is one of the dominant attributes of pavement condition affecting 
public perception of serviceability. It is also the main reason for heavy vehicle dynamic 
excitation and the generation of dynamic axle loads.  In this paper, the Hilbert-Huang 
Transform (HHT) was utilized to analyze the interaction between roughness profile and 
dynamic axle loads.  Roughness profile data were obtained using an inertial profilometer on 
five pavement sites with IRI roughness ranging from 0.88 to 3.17 m/km. The dynamic axle 
load data was collected at three operating speeds, namely 38, 60.5 and 79 km/h using a 5-axle 
semi-trailer equipped with an air suspension on the drive axles and a rubber suspension on 
the trailer axles. The size of the dataset allows a maximum of 10 frequency decomposition 
levels for each test site with a maximum detectable frequency of 4 cy/m. The extent of 
variation in roughness and dynamic axle loads for each of the frequency sub-bands was 
summarized through Hilbert energy defined as the sum of squares of the observations. The 
Hilbert normalized energy was also used to characterize the overall effects of roughness 
profile, suspension type, and vehicle speed on vehicle dynamics. Regardless of vehicle 
speeds and pavement roughness levels, the rubber suspension impacts much higher energy 
per unit length traveled than the air suspension. In conclusion, analyzing pavement roughness 
profile and dynamic axle loads using the HHT method provides an innovative look at the 
interaction between pavement roughness profile and heavy vehicle dynamic loads.  
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INTRODUCTION  

  Pavement roughness is considered as one of the dominant attributes of pavement 
condition affecting public perception of serviceability. In addition, it is the main contributor 
to heavy vehicle dynamics particularly the dynamic axle loads imparted on pavement 
surfaces (Papagiannakis et al., 1988). Understanding the effects of pavement roughness on 
heavy vehicle dynamics is important in designing both vehicles and pavements. 
  Traditionally, pavement vehicle interaction in the frequency domain has been studied 
through Fourier transforms (Papagiannakis and Gujarathi, 1995). A limitation of the Fourier 
approach is that it yields spectra based on the complete duration of the signals being 
analyzed. The Fourier approach assumes the input data as stationary signal. As a result, the 
transformed signal has no spatial or time reference. In the context of analyzing pavement 
vehicle interactions, this means that the effect of localized pavement profile disturbances 
could be totally masked and their effect on vehicle dynamics lost over a long pavement 
section. Furthermore, Fourier transforms do not allow a direct comparison between the extent 
of variation of roughness and truck dynamic axle loads over the range of frequencies studied. 

Recently, wavelet transforms have gained popularity in analyzing the effects of 
pavement surface characteristics on passenger car ride and vehicle dynamics (Zelelew and 
Papagiannakis, 2009). Several studies have demonstrated that spectral analyses based on 
wavelets yield better time-frequency resolutions for non-stationary signals than Fourier-based 
analyses (Wei and Fwa, 2004; Wei et al., 2005; Chatterjee et al, 2006; Papagiannakis et al, 
2007a; Papagiannakis et al, 2007b). The main challenge in wavelet analysis is the selection of 
the “best” mother wavelet to be used. Moreover, the instantaneous sub-band frequencies 
obtained from wavelet analysis are computed using low-pass and high-pass filter banks. 

Pavement roughness and dynamic axle load data collected at highway speeds 
represent nonlinear and non-stationary data. The Fourier and wavelet transformations may 
not be fully sufficient to characterize roughness features and investigate the effects on vehicle 
dynamics. The Hilbert-Huang Transform (HHT) is a relatively new method suitable for 
analyzing nonlinear and non-stationary data (Huang et al., 1998). The HHT method consists 
of a time adaptive decomposition operation using Empirical Mode Decomposition (EMD) to 
break down the input signal into a finite number of Intrinsic Mode Functions (IMFs). 
Subsequently, a Hilbert transform is applied to each IMF to obtain the Hilbert spectrum 
energy. HHT analysis preserves the spatial reference of the decomposed pavement roughness 
and truck dynamic axle load data. Recently, the HHT method was used to characterize 
pavement roughness (Gagarin et al., 2004 and Wu et al., 2004), to analyze truck dynamic axle 
load (Zelelew and Papagiannakis, 2009), and to detect structural damages (Yang et al., 2004).  
   
 
OBJECTIVE  

  The objective of this paper is to analyze pavement vehicle interaction using HHT. It 
presents an overview of the approach and the method used for computing the extent of 
variation over distinct ranges of frequency sub-bands.  It implements this approach to analyze 
dataset involving roughness profile data measured with an inertial profilometer and dynamic 
axle load measurements obtained on board an instrumented heavy truck. 
 
 
 



EXPERIMENTAL DATA 

  The experimental data utilized in the following analysis was developed by the 
National Research Council of Canada (Woodrooffe et al., 1986). Roughness profile data was 
obtained on five pavement sites with roughness IRI ranging from 0.88 to 3.17 m/km using an 
inertial profilometer at distance increments of 15.24 cm. The length of these sections ranged 
between 545 m and 900 m. A 5-axle semi-trailer equipped with an air suspension on the drive 
axles and a rubber suspension on the trailer axles was used to measure the dynamic axle 
loads. Three truck operating speeds (38, 60.5 and 79 km/h) were used.  A summary of the 
statistics of this dataset are shown in Table 1. This dataset was previously analyzed using 
Fourier and wavelet transforms (Papagiannakis and Gujarathi, 1995; Papagiannakis et al, 
2007a; Papagiannakis et al, 2007b). 
 
 

Table 1. Experimental Data Summary Statistics (After Papagiannakis et al., 1988). 

 
 
 
 
 
 
 
 
 
 

Test Site 
Roughness 
IRI (m/km) 

Ride 
Number+ 

Actual 
Speed 
(km/h) 

Dynamic Axle Load 
Standard Deviation  (kN)* 

Air 
Suspension 

Rubber 
Suspension 

1 0.88 3.83 
38 16.51 16.52 

60.5 14.20 22.34 
79 15.14 29.35 

2 1.37 3.38 
38 19.31 22.73 

60.5 17.71 38.56 
79 22.52 57.89 

3 1.52 3.15 
38 21.27 22.32 

60.5 23.11 29.78 
79 27.96 61.88 

4 1.82 2.40 
38 25.77 30.33 

60.5 39.01 34.55 
79 39.80 68.99 

5 3.17 2.58 
38 32.01 45.52 

60.5 45.22 55.61 
79 43.12 87.45 

* Mean tandem axle loads of 205.52 and 204.54 kN for the air and rubber suspensions, 
respectively. 
+ Ranges from 0 (impassable) to 5 (perfectly smooth). 



HHT METHOD 

The HHT method involves two steps. In the first step, the signal is decomposed into a 
finite number of Intrinsic Mode Functions (IMFs) using the method of empirical mode 
decomposition (EMD).  In the second step, the instantaneous frequency and the amplitude of 
each of these IMFs are computed. The resulting time-frequency-energy representation of the 
signal is defined as the Hilbert spectrum (Huang et al., 1998). This decomposition allows 
computing the amount of variation or energy contributed by each of the wavebands.  
 
Step One 

First, the decomposition algorithm detects local maxima and minima of the input 
signal )(ts  and connects them using a cubic spline to obtain the upper envelope )(tus and the 

lower envelope )(tls of the signal, respectively. Their mean value )(1 tm  is given by (Huang et 

al., 1998): 
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The difference between the original signal )(ts  and )(1 tm  yields the first component of the 

transformation )(1 th : 
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Additional transformation components are obtained by repeating this process, while 
considering the signal from the previous transformation as the original signal.   Hence, the 
transformation after k steps )(1 th k  is expressed as:  

)()1()( 111 tmkhth kk                                         (3) 

After these k steps, the resulting )(1 th k is considered as the first IMF )(1 tc : 

)()( 11 thtc k                                           (4) 

This )(1 tc  has to satisfy the following IMF properties (Huang et al., 1998): 

 For the entire dataset, the number of extreme and zero-crossings must either be equal 
or differ at most by one.  

 At any point, the mean value of the envelope defined by the local maxima and the 
envelope defined by the local minima must be zero. 

Subsequently, )(1 tc  is subtracted from the original signal to yield the first residual )(1 tr : 

)()()( 11 tctstr                                                                (5)  
This residual is treated through the same transformation process described above for the 
original signal to produce the second IMF transformation. Subsequent IMFs )(tc j are 

computed until the final residue )(trn reduces to a monotonic or constant function.  

Overall, the decomposition of the original signal )(ts into n  IMFs )(tc j and a residual 

)(trn  can be expressed as: 
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where, n  is the number of IMFs. 
 
 



Step Two 

The second step is to apply the Hilbert transform to the decomposed IMFs. Each IMF 
component has a Hilbert transform expressed as: 
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The analytical signal )(tzi is defined as: 
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where, )()()( 22 tytcta jjj   is the magnitude of the instantaneous amplitude and 

)]()(arctan[)( tctytθ jjj   is the phase of the analytic signal.  

 
The instantaneous frequency can be related to the phase angle using: 
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Thus, the original signal can be represented as the sum of the real part of the analytical 
signals expressed as: 
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Energy Calculations  

Equation 10 represents the energy and the instantaneous frequency as a function of 
time. This representation is called the Hilbert-Huang spectrum )),(( ttH j . The Hilbert 

spectrum energy at thj  level of decomposition denoted by jh can be represented by the square 

of the amplitudes as: 
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The total energy for all decompositions Th can be computed as: 
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Therefore, the Hilbert relative and normalized energy can be obtained using the following 
equations: 
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where, N is the number of observations and dx is the sampling distance increment.   
 



ANALYSIS 

  The HHT analysis was carried out using the signal processing toolbox in MATLABTM 
(Misiti et al., 2009). Depending on the test sections, the size of the dataset ranged from 2483 
to 7199 observations. This allows a maximum of 10 decomposition levels for each test site 
with a maximum detectable frequency of 4 cy/m (Tables 2 and 3). The level of 
decomposition is denoted as h1, h2, h3, … h10. The actual frequency range for each sub-band 
was computed from the level of decomposition and the number of data points analyzed 
(Papagiannakis et al, 2007a; Papagiannakis et al, 2007b).  Each of the decomposition levels 
represents the amplitude of the signal in a distinct range of frequencies. Consequently, the 
highest and lowest frequency sub-bands correspond to decomposition level 1 and level 10, 
respectively.  
 
   

Table 2. Roughness Profile Sub-band Frequency.  

Sub-band  
Levels 

Site 1 Site 2 Site 3 Site 4 Site 5 

Frequency
(cy/m) 

Frequency
(cy/m) 

Frequency
(cy/m) 

Frequency 
(cy/m) 

Frequency
 (cy/m) 

Level 1 (h1) 2.4354 2.4767 3.7587 2.8567 2.5605 

Level 2 (h2) 1.2177 1.2383 1.8793 1.4284 1.2802 

Level 3 (h3) 0.6088 0.6192 0.9397 0.7142 0.6401 

Level 4 (h4) 0.3044 0.3096 0.4698 0.3571 0.3201 

Level 5 (h5) 0.1522 0.1548 0.2349 0.1785 0.1600 

Level 6 (h6) 0.0761 0.0774 0.1175 0.0893 0.0800 

Level 7 (h7) 0.0381 0.0387 0.0587 0.0446 0.0400 

Level 8 (h8) 0.0190 0.0193 0.0294 0.0223 0.0200 

Level 9 (h9) 0.0095 0.0097 0.0147 0.0112 0.0100 

Level 10 (h10) 0.0048 0.0048 0.0073 0.0056 0.0050 

 
 
 
 

 

 



Table 3. Dynamic Load Sub-band Frequency; Site 5.  

Sub-band  
Levels 

Frequency (cy/m) * 

Vehicle Speed  

38 km/h 60.5 km/h 79 km/h 

Level 1 (h1) 3.0253 2.2757 2.5605 

Level 2 (h2) 1.5127 1.1378 1.2802 

Level 3 (h3) 0.7563 0.5689 0.6401 

Level 4 (h4) 0.3782 0.2845 0.3201 

Level 5 (h5) 0.1891 0.1422 0.1600 

Level 6 (h6) 0.0945 0.0711 0.0800 

Level 7 (h7) 0.0473 0.0356 0.0400 

Level 8 (h8) 0.0236 0.0178 0.0200 

Level 9 (h9) 0.0118 0.0089 0.0100 

Level 10 (h10) 0.0059 0.0044 0.0050 

* For both air and rubber suspensions. 

 
 

  The extent of roughness and dynamic axle load variation in each of the sub-band 
levels was summarized through an energy metric defined as the sum of squares of the 
observations. Therefore, the total Hilbert energy contents were computed as the sum of the 
squares of the decomposed coefficients in each sub-band. Further, the summation of total 
energy of the sub-band levels was normalized by the length of the test sections to represent 
normalized energy of the test site. 
  The overall pavement vehicle interactions can be summarized using the Hilbert 
normalized energy. The effects of pavement roughness and suspension types on vehicle 
dynamics using the truck speeds tested are illustrated in Figures 1 through 3. In general, the 
rubber suspension retains higher normalized energy than the air suspension regardless of 
vehicle speeds and pavement roughness levels. It is observed that for the rougher test sites the 
rubber suspension exhibits lower dynamic activity at 60.5 km/h than at 38 km/h, which is 
likely due to its natural frequencies in dynamic axle loads. For a given suspension type, there 
is a clear increase in normalize energy trend for increase in pavement roughness levels. In 
general, the rubber suspension impacts much higher energy per unit length traveled than the 
air suspension.  
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Figure 1. Effects of Pavement Roughness and Suspension Types on Truck Dynamics;  

Speed 38 km/h. 

Air

Rubber0

250

500

750

1000

0.31
1.20

2.49
2.15

5.74

Dynamic
Load NE
(kN2/m)

Roughness NE (mm2/m)

 
Figure 2. Effects of Pavement Roughness and Suspension Types on Truck Dynamics;  

Speed 60.5 km/h. 
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Figure 3. Effects of Pavement Roughness and Suspension Types on Truck Dynamics;  

Speed 79 km/h. 
 

SUMMARY AND CONCLUSION 

This paper presented an analysis of pavement vehicle interaction data using the HHT 
method. The data analyzed included pavement roughness profile and dynamic axle load data 
collected on five pavement test sites using inertial profilometer and 5-axle semi-trailer, 
respectively. The truck was equipped with an air suspension on the drive axles and a rubber 
suspension on the trailer axles. The size of the dataset analyzed allowed 10 decomposition 
levels with a maximum detectable frequency of 4 cy/m. The signal decomposition with this 
approach preserved the spatial reference of the roughness and load data and was independent 
of signal processing assumptions. This was a distinct advantage over the conventional Fourier 
and wavelet approaches. The extent of variation in roughness and dynamic axle load for each 
of the frequency sub-bands was summarized through Hilbert energy defined as the sum of 
squares of the observations (units in mm2 and kN2, respectively). The Hilbert normalized 
energy was also used to characterize the overall effects of roughness profile, suspension type, 
and vehicle speed on vehicle dynamics. Regardless of vehicle speeds and pavement 
roughness level, the rubber suspension impacted much higher energy per unit length traveled 
than the air suspension. In general, it was found that the HHT method is a suitable tool 
compared to Fourier and wavelet transforms for analysis of pavement-vehicle interaction. In 
conclusion, analyzing pavement roughness profile and dynamic axle loads using the HHT 
method provided an innovative approach to characterize pavement-vehicle interaction.  
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