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ABSTRACT 

  This paper describes the implementation of a digital image processing (DIP) 
algorithm designed to automate the processing of asphalt concrete X-Ray computed 
tomography (CT) images. It involves circular cross section images of asphalt concrete (AC) 
cores of known volumetrics. Its innovation is that it uses the volumetric properties as the 
main criterion for establishing gray level thresholds for the boundaries between air-mastic 
and mastic-aggregates. The threshold values are established by minimizing the error between 
estimated core volumetric properties and the laboratory measured volumetric properties. The 
algorithm is referred to as volumetric-based global minima (VGM) thresholding. This method 
was implemented using MATLABTM routines for pre-processing and post-processing the X-
Ray CT images. The data analyzed includes nine AC cores and their X-Ray CT images. 
Three mix designs and three aggregate types were used, all involving a PG 76-22 binder.  
Each core was imaged through 148 sections perpendicular to its axis (i.e., 1 mm distance 
increments). Post-processing of the rectangular section images enhanced separation between 
adjacent aggregates. The final images produced are significantly improved compared to the 
raw X-Ray CT images. The algorithm was shown to produce realistic renderings of the 
microstructure of asphalt concretes. Their quality is sufficient for input into numerical 
simulations of AC micromechanical behavior. This algorithm was shown to be a major 
improvement over the largely manual techniques used in the past.   
 
Keywords: Asphalt concrete, digital image processing, and microstructure.     
 
 
1 (Corresponding Author) Visiting Assistant Professor, University of Minnesota Duluth, 
Department of Civil Engineering, 1303 Ordean Court, Duluth, MN 55812, Phone: (218)-726-
8427, Fax: (218)-726-8581, E-mail: hzelelew@d.umn.edu 
 
2  R.F. McDermott Professor and Chair, Department of Civil and Environmental Engineering  
University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, Phone: 
(210)-458-7517, Fax: (210)-458-6475 , E-mail: at.papagiannakis@utsa.edu 
 
 
 

 
 
 
 
 
 



INTRODUCTION 

  Asphalt concrete (AC) mixtures are heterogeneous materials consisting of air voids, 
aggregates and mastics. Mastics consist of binder and fines passing sieve size 75 micron. The 
overall performance of ACs depends to a large extent on their internal microstructure, that is 
the way these three phases are distributed and interact with each-other. Imaging techniques 
have been used effectively for studying the microstructure of ACs.  Effectively capturing the 
AC microstructure is also essential for modeling their mechanical behavior using numerical 
techniques.  A number of recent studies have utilized X-Ray computed tomography (CT) for 
capturing and characterizing the AC microstructure (Yue et al., 1995; Masad et al., 1999; 
Shashidhar, 1999; Masad et al., 2001; Masad et al., 2002; Tashman et al., 2002; Wang et al., 
2004). 

The majority of the studies highlighted above use a combination of digital image 
processing (DIP) and manual/subjective techniques for processing AC images in a format 
suited to numerical simulation. DIP techniques include image contrast enhancement, image 
noise removal, thresholding, edge detection and image segmentation. Typically, the gray 
level threshold that separates aggregates from mastics referred to as thresholding is selected 
subjectively. Additional pixel modifications are required to adjust the relative proportions of 
aggregate and mastic to reflect the actual volumetrics of the AC (Papagiannakis et al., 2002).  
Isolating the air phase further complicates the problem.  To date, there have been few 
attempts to fully automate this process (Yue et al., 2003; Offrell and Magnusson, 2004). 

An automated method was developed for the processing of AC X-Ray CT images 
(Zelelew and Papagiannakis, 2008).  Its key feature is that it performs gray level thresholding 
on the basis of the volumetric properties of the mix. It establishes gray threshold values 
between air-mastic and mastic-aggregate by minimizing the error between the relative 
volume of the gray image and the corresponding property of the AC core.  The method, 
referred to as a volumetrics-based global minima (VGM) thresholding algorithm, is fully 
described in Zelelew (2008). It applies to images of sections of AC cores taken perpendicular 
to the axis at regular distance intervals. Its advantage is that it can efficiently provide 
representations of the AC microstructure, while preserving the volumetric properties of the 
mix.  As a result, it is suited for capturing the AC microstructure for numerical simulation 
purposes.  

  
 

OBJECTIVE  

  This paper has two objectives:  
 Demonstrate the application of the VGM thresholding algorithm in effectively 

processing a large number of X-Ray CT images. 
 Use these images to study AC microstructure properties such as mixture 

proportions and distributions.  
 
 
 
 
 
 



EXPERIMENTAL DATA  
 The data analyzed consisted of an AC mixture and its X-Ray CT images is part of a 
Texas DOT funded study (Alvarado et al., 2007).  The samples were prepared by the 
University of Texas-El Paso and X-Ray CT scanning took place at Texas A&M University.  
A summary of the background information for this data is given below.   

A total of nine AC cores was produced, each involving a combination of three 
different mix designs and three different aggregate types. The mix designs included are 
Coarse Matrix High Binder Type C (CMHB-C), Porous Friction Course (PFC), and 
Superpave Type C (Superpave-C). Three aggregate types were used, namely hard limestone 
(HL), granite (G), and soft limestone (SL). The binder grade used for all these samples was a 
PG 76-22. The gyratory compacted specimen, 150 mm diameter by 165 mm height was cored 
and sawn to a diameter of 100 mm and a height of 150 mm, resepectively.  

The type of facility required and the procedure used for capturing AC images using 
X-Ray CT is well documented (Masad et al., 2002). Each of the nine AC cores was scanned 
perpendicular to its axis at 1 mm distance interval to yield 148 slices per core, ignoring the 
top and bottom slices. Figure 1 shows the raw format of one of these images consisting of 
512 x 512 pixels. The resulting resolution is 195 micron per pixel. A summary of the 
background information for this data can be found in Zelelew (2008).  
 

 
                      

Figure 1. Example of Raw Image; HL CMHB-C Core. 
 
 
OVERVIEW OF THE VGM ALGORITHM  

An automated digital image processing (DIP) technique called volumetric-based 
global minima (VGM) thresholding algorithm was proposed to process AC X-ray CT images 
(Zelelew and Papagiannakis, 2008). VGM was utilized to process the horizontally sliced X-
Ray CT images. The method is based on identifying gray level boundary thresholds between 
air, mastic and aggregate phases with reference to volumetric information. VGM has three 
inter-related stages. The first stage involves image pre-processing for contrast enhancement 
and noise removal. The second stage is the main thresholding routine accepting as input the 
enhanced images of the first stage and volumetric information for the AC. It consists of two 
components, namely volumetrics-driven thresholding and three-dimensional 
representation/sectioning. The third stage further enhances particle separation through edge 
detection and image segmentation techniques. Implementation of VGM to study AC 
microstructure is described below. 

 
 
 



IMPLEMENTATION OF THE VGM ALGORITHM  
Image Pre-Processing  

Typically, raw X-Ray CT images have poor contrast and include a variety of types of 
noise. Its main sources are sensor quality, as well as image digitizing and pre-processing. 
Variations in densities within the individual mastic and aggregate also contribute to image 
noise.   Improving image contrast and reducing noise is essential in obtaining enhanced 
image quality. X-ray CT images of AC core sections consist of pixel representations that vary 
in gray level between 0 and 255 (i.e., black and white, respectively). An example of such a 
raw image is shown in Figure 2a. 

Image contrast can be improved using an image contrast enhancement technique 
called histogram equalization. This method distributes the gray level intensity of pixels 
uniformly throughout the image. The MATLABTM built-in function histeq was used for this 
purpose (Misiti et al., 2009). To reduce AC X-Ray CT image noise, the median filtering 
technique was utilized. Figure 2b shows the enhanced image using the histogram equalization 
method. Figure 2c shows an example of image noise reduction using median filtering using a 
kernel of 3x3 pixels. Comparing Figures 2a, 2b, and 2c suggests that the pre-processing stage 
significantly enhances image quality. 

 
 

                       
                   (a)                                           (b)                                              (c)          
   
Figure 2. Example of Pre-Processing an Image of the HL CMHB-C Core; (a) Raw Image; (b) 
Contrast Enhanced Image; (c) De-noised Image. 

 
 

Thresholding 
The main VGM thresholding algorithm developed seeks to establish two gray level 

thresholds, a lower threshold T1 corresponding to the air void-mastic boundary, and a higher 
threshold T2 corresponding to the mastic-aggregate boundary. Finding these thresholds, 
within the 0 to 255 range, involves an iterative process, whereby a gray level threshold value 
is assumed, and the corresponding area proportions for each core section are computed and 
combined into an estimated average volumetric property for the core.  The threshold values 
selected are those that minimize the error between estimated and actual volumetric properties.  

Applying the thresholding methodology yielded the two thresholding boundaries for 
each of the AC cores tested, namely T1 and T2.  In performing these calculations, it was 
assumed that the mastic contains all the fines that cannot be detected by the image resolution 
(i.e., for this dataset sizes finer than 195 micron).  

The actual boundary gray levels are illustrated in Figures 3 and 4 for T1 and T2, 
respectively. The highest T1 value was observed for the Superpave-C mix with the hard 



limestone aggregate, while the lowest was for the CMHB-C with soft limestone and PFC 
with hard limestone aggregate. The highest T2 value was observed for the CMHB-C mix with 
the hard limestone aggregate, while the lowest was for the PFC mix with the granite 
aggregate. Table 1 summarizes the errors between the laboratory measured and VGM 
estimated volumetric properties. The maximum errors observed were 1.43%, 4.33% and 
0.92%, respectively. These results suggest that the VGM algorithm is quite accurate in 
preserving mix volumetric properties.  
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Figure 3. Air Void-Mastic Boundary Threshold (T1).  
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Figure 4. Mastic-Aggregate Boundary Threshold (T2).  



Table 1. Comparison of Laboratory Measured and VGM Estimated Mixture Proportions.  

Mixture ID 
Air Void (%) Absolute 

Error 
(%) 

Mastic (%) Absolute
Error 
(%) 

Aggregate (%) Absolute 
Error 
(%) Measured Estimated Measured Estimated Measured Estimated

HL  
CMHB-C 

7.30 7.32 0.26 16.98 17.07 0.49 75.72 75.61 0.14 

G  
CMHB-C 

6.90 6.89 0.19 17.72 18.19 2.66 75.38 74.92 0.61 

SL  
CMHB-C 

7.00 6.99 0.17 18.33 18.85 2.86 74.67 74.16 0.69 

HL PFC 19.50 19.42 0.39 14.78 14.98 1.33 65.72 65.60 0.18 

G PFC 19.60 19.71 0.58 14.34 14.58 1.63 66.06 65.71 0.53 

SL PFC 19.30 19.37 0.38 15.42 15.29 0.81 65.28 65.34 0.08 

HL 
Superpave-C 

7.40 7.42 0.31 16.81 17.14 1.98 75.79 75.44 0.47 

G 
Superpave-C 

6.90 6.96 0.87 17.39 16.64 4.33 75.71 76.41 0.92 

SL 
Superpave-C 

6.70 6.60 1.43 17.84 18.40 3.15 75.46 75.00 0.62 

     HL: Hard Limestone; G: Granite; and SL: Soft Limestone 
 



 

 

Image Post-Processing  
Studying Figure 5d points to the need for image post-processing to separate 

aggregates contacting each-other (e.g., refer circled aggregates). This problem needs to be 
resolved prior to using these images in numerical simulations. Image post-processing was 
carried out through edge detection and segmentation. The rectangular sections obtained 
needed enhancement to improve separation between adjacent particles. It was carried out 
through edge detection techniques using Canny edge operator (Canny, 1986). It is based on 
the first derivative of gray intensity, but it retains only derivatives that exceed a threshold 
value.  Image segmentation consists of partitioning mixture components into distinct regions 
(i.e., in this case air voids, mastics and aggregates). Segmentation was carried out using 
watershed transformations to separate overlapping (or touching) mastic and aggregate 
objects. It was performed using morphological dilation and erosion operations through 
MATLABTM (Misiti et al., 2009). Figure 6 shows an example of this operation for the HL 
CMHB-C core. Figures 6a, 6b, and 6c show the mastic phase, the aggregate phase, and the 
entire mixture, respectively. Comparing Figure 5d, Figure 6b shows the improved separation 
between aggregate, as a result of post-processing. Similar processing was carried out for all 
nine core images. The VGM software and the associated pre-processing and post-processing 
routines can be made available on request.  

 
 
 

 (a)     (b) 

 (c)     (d)  
   
Figure 5. Representation of the HL CMHB-C Core Sections Prior to Image Post-Processing; 
(a) Image after Thresholding, (b) Air Phase, (c) Mastic Phase, and (d) Aggregate Phase.  



 

 

   
                                         (a)                            (b)                                (c) 

Figure 6. Representation AC Rectangular Sections for Numerical Modeling/Simulation, (a) 

Mastic Phase in Blue, (b) Aggregate Phase in Red, and (c) Mixture; HL CMHB-C. 

 
 
 

SUMMARY AND CONCLUSION 
This paper presented the results of implementing the VGM algorithm on a large 

dataset of AC X-Ray CT images.  It provided examples from each step of the algorithm, 
namely, image contrast enhancement, noise reduction, thresholding, edge detection and 
segmentation. Analysis of the 2-D rectangular sections assembled from the circular sections 
revealed that the air-mastic gray threshold is relatively insensitive to the air void content, 
while the mastic to aggregate gray threshold increases with decreasing aggregate volume.  
The three Superpave mixtures exhibited the lowest mastic volume proportions, while the 
porous friction course mixtures exhibited the highest aggregate volume proportions.  Post-
processing of the rectangular section images improved separation between adjacent 
aggregates. The final images produced are significantly improved compared to the raw X-
Ray CT images. The algorithm was shown to produce realistic renderings of the 
microstructure of asphalt concretes. Their quality is sufficient for input into numerical 
simulations of AC micromechanical behavior. This algorithm was shown to be a major 
improvement over the largely manual techniques used in the past. Therefore, researchers and 
State highway agencies can implement the approach for pavement modeling and quality 
control/assurance (QC/QA) purposes. 
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