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ABSTRACT: In recent years, there has been a worldwide shift in pavement design from 
empirical to mechanistic-empirically based methods. With this trend, a need for numerical 
analysis tools with the ability to simulate loading shape that closely resembles footprint of a 
tire acting on the pavement surface has started to emerge. With its Stress-in-Motion (SIM) 
technology, South Africa is well placed to lead this effort where three-dimensional 
tire-pavement contact stresses and tire foot-prints can be used to calibrate rectangular loading 
models for use in numerical analysis. The objective of this paper is to present closed-form 
solutions of pavement responses due to static rectangular loadings as a special case to wave 
propagation problems. In this study, two classical mathematical methods i.e. classical 
transform integral and classical potential function methods were investigated for flexibility 
and efficiency. The former was adopted in this study and a formulation of pavement 
responses is presented in this paper. This method is flexible and may easily be extended to 
dynamic and wave propagation analyses. Results of the new approach are validated by 
comparing its results with results obtained using GAMES software (for same load magnitude 
and loaded area) that is widely used in Japan and South Africa for axi-symmetric analysis of 
pavement structure. 
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1 GENERAL INTRODUCTION 
 
By supporting movement of people and goods, a sound road network plays a key role in 
socio-economic development of a country. In order to better understand impact of the 
increased loading on roads, studies on tire-road interaction have gained prominence in recent 
years. Tires form an essential interface between vehicles and road pavement surfaces. These 
are the only parts of the vehicle that are in contact with the road and transmit the vehicle 
loading to the road surface through a very small contact area, generally called the ‘contact 
patch’ or ‘tire foot-print’. By using fewer tires and carrying heavier cargo, modern trucks are 
exerting much higher contact stresses on the road surface than their predecessors. A good 
understanding of tire-road contact stresses is, therefore, important for better road pavement 
designs, and, hence, improved performance. A technique referred to as Stress-In-Motion 
(SIM), which may be seen as a next generation of the well known Weigh-In-Motion (WIM) 
axle/truck weigh technologies, has been developed with specific use in capturing individual 
tyre loads and 3D contact stresses for the sole purpose of improved mechanistic-empirical 
road pavement design and analysis (De Beer, 2008, Morgan et. al, 2007). This technique has 



shown that tire-pavement contact stresses to be mostly rectangular and not circular in shape. 
Cartesian coordinate system may be convenient in dealing with the uniform/non-uniform 

load acting over rectangular area, but there are few research reports on the derivation of its 
theoretical solution. Bufler (1971) derived the theoretical solution for multilayered systems 
using Cartesian coordinate system but did not provide any worked example. Further, Ernian 
(1989) used both cylindrical and Cartesian coordinate systems to derive solutions for both 
circular and rectangular uniformly distributed loads acting on the surface of a multilayered 
system. The approach presented by Ernian is very resourceful but still complicated because it 
involves considerable algebra. 
 
 
2 THREE DIMENSIONAL PROBLEM OF ELASTICITY THEORY 
 
There are mainly three methods that may be used to solve problems of the theory of elasticity 
(Borodachev, 1995, 2001). In the first one, the displacement vector is determined first, and 
this vector is then used to determine the stress and strain tensors (problem in displacements). 
Next, there is a second method where the stress tensor is determined first, and then this tensor 
is used to determine the strain tensor and displacement vector (problem in stresses). Lastly, in 
the third method the strain tensor is determined first, and then stress and displacement tensors 
are determined (problem in strains). The work presented in this paper deals with the first 
method of problem in displacements. 

In this regard and for 3D problems, the Navier equations are the most convenient 
representation for the field equations. However, they are cumbersome to deal with because of 
the need to solve three coupled partial differential equations for the three displacement 
components. The difficulty with finding particular solutions of the system of equations in 
terms of the displacements arises because each of the sought deflection functions in Cartesian 
coordinates (x, y, and z) appear in all three equilibrium equations. 

However, the solution may be simplified by representing displacements in terms of 
harmonic potentials. It is because this approach decouples the equations and there are various 
ways to do this. The most common approach is to use the so called Papkovich-Neuber 
potentials to represent the solution (Ozawa et al. 2009, Borodachev and Astanin, 2008). This 
enables one to use a well-known catalogue of particular solutions of the Laplace equation and 
sometimes even reduce the problem if not completely to one of the classical problems of the 
theory of harmonic functions (theory of potential). Despite the simplification, it is difficult to 
extend this approach to problems of dynamic or moving load analysis (Ozawa, et al. 2010).  

The objective of this paper, therefore, is to present closed-form solution of pavement 
responses due to static rectangular loadings as a special case to wave propagation problems. 
In this study, a more flexible and efficient classical transform integral method is utilized as 
opposed to classical potential function method based on Papkovich-Neuber potentials. 
 
 
3 GENERAL THEORY 
 
A system of rectangular Cartesian coordinates (x, y, z) is used. By assuming the body forces 
to be zero, equilibrium equations may be written as: 
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where xσ ， yσ ， zσ ， xyτ ， xzτ , and yzτ  are stresses in an infinitesimal element. 

Strain-displacement relationship may be represented as follows: 
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where u , v , and w  are displacements in the directions of x -, y -, and z -axes. 

Furthermore, xε ， yε ，and zε  are normal strains corresponding to normal stresses xσ , yσ , 

and zσ , while xyγ , xzγ , and yzγ  are shear strains corresponding to shear stresses xyτ , 

xzτ , and yzτ . Boundary conditions for rectangular loads acting on a surface of a 

semi-infinite medium shown in Figure 1 may be represented as shown below: 
 

when ax ≤  and by ≤  then; 
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when ax >  and by >  then; 
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Using Lame’s constants, stress-strain relationship may be written as: 
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Figure 1: Uniformly distributed rectangular loads 



























































+
+

+

=































yz

xz

xy

z

y

x

yz

xz

xy

z

y

x

γ
γ
γ
ε
ε
ε

µ
µ

µ
µλλλ

λµλλ
λλµλ

τ
τ
τ
σ
σ
σ

00000

00000

00000

0002

0002

0002

 (4) 

where  
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E is elastic modulus and ν  is Poisson’s ratio. Since in a multilayered system, layer 
materials and thicknesses may be different, Eqs (1), (2), and (4) have to be derived for each 
layer. Substituting Eqs (2) and (4) into Eq (1), Navier’s equations may, in the absence of body 
forces, be obtained as functions of displacements as shown below: 
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4 DERIVATION OF THE SOLUTIONS 
 
In order to derive the solutions, it is assumed that the displacement functions u , v , and w  
may be represented using the following double trigonometric series in case of vertical loading. 
(Note: due to lack of space, derivations for the case of horizontal loads in both x  and y  
directions will not be presented in this paper): 
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where, )(zU , )(zV , and )(zW  are the unknown displacement functions about the 

coordinate z  and xξ  and yξ  are Fourier parameters for x  and y coordinates, 

respectively. Substituting Eq 7 into Eq 6 and rearranging yields: 
 

0)()(
)(

)()(2
2

2
=







 ++
∂

∂+−













−

∂
∂

zVzU
z

zW
zU

z
yxx ξξµλξξµ  (8a) 

 

0)()(
)(

)()(2
2

2
=







 ++
∂

∂+−













−

∂
∂

zVzU
z

zW
zV

z
yxy ξξµλξξµ  (8b) 

 

0
)()()(

)()(
2

2
2

2

2
=















∂
∂+

∂
∂+

∂
∂++














−

∂
∂

z

zV

z

zU

z

zW
zW

z
yx ξξµλξµ  (8c) 

 

where 222
yx ξξξ +=  and the solutions of )(zU , )(zV , and )(zW  are obtained as: 
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Substituting Eq (9) in Eqs (2) and (4) and rearrange, the relationship between stresses and 

coefficients of integration is obtained to give transfer matrix for each layer as: 
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Coefficients of integration 1C , 2C , 3C , 4C , 5C  and 6C are functions of xξ  and yξ  

and are determined by using the known boundary conditions. After determining the 
coefficients of integration, Fourier inverse transform is performed on Eqs (10) to obtain 
displacements and stresses as shown below: 
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5 APPLICATION TO MULTILAYERED SYSTEM 
 
Extension of the solutions to a multilayered system follows the procedure illustrated by Maina 
and Matsui (2004), which also utilizes transfer matrix. A multilayered system is as shown in 
Figure 2. Using layer matrix represented by Eq (10), the relation between responses on top 
and at the bottom of layer i  may be given as follows: 
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Figure 2: Model for multilayered elastic system 
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where the superscript ( )i  in Eq (12) represents the layer number. The boundary condition 

at the interface of layers i  and 1+i  may be given as follows: 
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Using matrices from Eqs (12) and (13), the relationship between stresses and strains at the 

surface of layer 1 and coefficients of integration of layer N  may be determined. 
 

6 BOUNDARY CONDITION 
 
Applying Fourier transform on the boundary condition defined by Eq (3) yields: 
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7 EXTENSION TO MULTIPLE LOADING 
 
Consider multiple loads shown in Figure 3. Analysis may be carried out by introducing a local 
coordinate system ),,( zyx  whose origin is at the center of each load and the final responses 
may be determined by using the principle of superposition and referencing each load back to 
the global axis ),,( ZYX : 

 



xXX += 0 , yYY += 0 , zZZ += 0  (15) 

 
where ),,( 000 ZYX  is the distance of the origin of local coordinate system from the 

global coordinate system.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
8. VALIDATION OF NUMERICAL ANALYSIS 
 
In order to evaluate the viability of the algorithm developed, the 3-layered system shown in 
Figure 4 was analyzed considering two shapes of load. That is uniformly distributed 
rectangular and circular loads. The analysis of the rectangular load was performed using the 
theory described above and GAMES software was used to analyze the circular load (Maina 
and Matsui, 2004). Surface displacements and stresses within the multilayered system were 
compared. Furthermore, the calculated surface stress zσ  under rectangular load was 
compared with the boundary condition (external applied load) in order to confirm the 
accuracy of numerical analysis.  

In this case, the center of the uniformly distributed load coincided with the center of the 
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Figure 4: Analytical model together with two load shapes 



global coordinate system )0,0(),( =YX . The magnitude of the load in the direction of 

Z -axis was kN49=zP  and in the direction of Y -axis was 24.5kN=yP . The load shapes 

are shown in Figures 4(b) and 4(c), where the square load is cm30cm30 ×  and for the area 

A  of the circular load to be similar to the rectangular load with 2cm900=A , its radius was 
set to cm9.16 . 

Results of surface displacement shown in Figure 5(a) were computed at cm0=Z , 
cm0=X  and cm150~0=Y . There is good match between results from circular and 

rectangular loads. Figure 5(b) shows results for zσ  and yzτ , which were determined at 

)0,0(),( =YX  and cm150~0=Z . There is also good agreement of stresses, which validates 
the accuracy of the algorithm that was developed in this research. 

The contour plot of surface stress is shown in Figure 5(c), which was produced by 
considering the symmetry of the load and utilized only the positive X , Y -axes. The 
theoretical boundary condition for zσ  within the loaded area ( cm15<= YX ) was 

MPa44.5−=zσ  and MPa0=zσ  for cm15>= YX , whereas at the edge of the load 

( cm15== YX ) the stress, MPa72.2−=zσ . Compared to the theoretical boundary condition 
values, Figure 6(c) shows some analytical errors in the vicinity ( 14== YX ~ cm16 ) of the 
load edge cm15== YX , while very good results were obtained elsewhere. 
 

 
9 OBSERVATION AND CONCLUDING REMARKS 
 
In this study, theoretical analysis of a multilayered system was successfully derived by using 
Cartesian coordinate system. It is important to point out that using this approach, uniform and 
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(b) Normal and shear stresses 
 

 
Figure 5: Analytical results 

 

       (c) Contour plot of surface stress 



non-uniform rectangular loads may be analyzed.  
From the worked examples presented, the following observations, mainly on primary 

responses, were made: 
(1) Software, such as GAMES were developed for the purpose of determining pavement 

primary responses, at any point of interest, due to the action of uniformly distributed circular 
load. However, the method presented in this paper is capable of evaluating rectangular loads, 
which may not only be uniformly distributed but also non-uniformly distributed. Rectangular 
shaped load is used because it resembles tire footprints and the analysis will be more realistic. 

(2) There was a very good overall match between responses due to uniform load over a 
rectangular area that was analyzed by the algorithm developed in this study and the uniformly 
distributed circular load that was analyzed using GAMES software. 

(3) Although not presented in this paper, significant differences between circular and 
non-circular loads are anticipated when either multiple loads or non-uniform loads are 
analyzed. 
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