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ABSTRACT: In recent years, there has been a woddwghift in pavement design from
empirical to mechanistic-empirically based methddsth this trend, a need for numerical
analysis tools with the ability to simulate loadisigape that closely resembles footprint of a
tire acting on the pavement surface has starteghterge. With its Stress-in-Motion (SIM)
technology, South Africa is well placed to lead stheffort where three-dimensional
tire-pavement contact stresses and tire foot-paatsbe used to calibrate rectangular loading
models for use in numerical analysis. The objectf¢his paper is to present closed-form
solutions of pavement responses due to staticrmgelar loadings as a special case to wave
propagation problems. In this study, two classioathematical methods i.e. classical
transform integral and classical potential functrorthods were investigated for flexibility
and efficiency. The former was adopted in this gtahd a formulation of pavement
responses is presented in this paper. This methdléxible and may easily be extended to
dynamic and wave propagation analyses. Resultthefnew approach are validated by
comparing its results with results obtained usif§MES software (for same load magnitude
and loaded area) that is widely used in Japan anathSAfrica for axi-symmetric analysis of
pavement structure.
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1 GENERAL INTRODUCTION

By supporting movement of people and goods, a saooad network plays a key role in
socio-economic development of a country. In orderbetter understand impact of the
increased loading on roads, studies on tire-rotatantion have gained prominence in recent
years. Tires form an essential interface betwedmncles and road pavement surfaces. These
are the only parts of the vehicle that are in ccinteith the road and transmit the vehicle
loading to the road surface through a very smatitaxt area, generally called the ‘contact
patch’ or ‘tire foot-print’. By using fewer tireqd carrying heavier cargo, modern trucks are
exerting much higher contact stresses on the roddce than their predecessors. A good
understanding of tire-road contact stresses isetbe, important for better road pavement
designs, and, hence, improved performance. A tgdenreferred to as Stress-In-Motion
(SIM), which may be seen as a next generation @fuhll known Weigh-In-Motion (WIM)
axle/truck weigh technologies, has been developiéld specific use in capturing individual
tyre loads and 3D contact stresses for the solpagger of improved mechanistic-empirical
road pavement design and analysis (De Beer, 2008gan et. al, 2007). This technique has



shown that tire-pavement contact stresses to bédymestangular and not circular in shape.

Cartesian coordinate system may be convenient atindewith the uniform/non-uniform
load acting over rectangular area, but there akerésearch reports on the derivation of its
theoretical solution. Bufler (1971) derived thedtedical solution for multilayered systems
using Cartesian coordinate system but did not pewany worked example. Further, Ernian
(1989) used both cylindrical and Cartesian cooteireystems to derive solutions for both
circular and rectangular uniformly distributed lsaaicting on the surface of a multilayered
system. The approach presented by Ernian is vepureeful but still complicated because it
involves considerable algebra.

2 THREE DIMENSIONAL PROBLEM OF ELASTICITY THEORY

There are mainly three methods that may be usedlt¥e problems of the theory of elasticity
(Borodachev, 1995, 2001). In the first one, thepldisement vector is determined first, and
this vector is then used to determine the stredsstmain tensors (problem in displacements).
Next, there is a second method where the stressit&ndetermined first, and then this tensor
Is used to determine the strain tensor and displanévector (problem in stresses). Lastly, in
the third method the strain tensor is determinest,fand then stress and displacement tensors
are determined (problem in strains). The work prese in this paper deals with the first
method of problem in displacements.

In this regard and for 3D problems, the Navier ¢igna are the most convenient
representation for the field equations. Howevegythre cumbersome to deal with because of
the need to solve three coupled partial differéndguations for the three displacement
components. The difficulty with finding particulaolutions of the system of equations in
terms of the displacements arises because eable gbtight deflection functions in Cartesian
coordinates (X, y, and z) appear in all three @gpuim equations.

However, the solution may be simplified by represen displacements in terms of
harmonic potentials. It is because this approadioulges the equations and there are various
ways to do this. The most common approach is totheeso called Papkovich-Neuber
potentials to represent the solution (Ozaaval. 2009, Borodachev and Astanin, 2008). This
enables one to use a well-known catalogue of pdaticsolutions of the Laplace equation and
sometimes even reduce the problem if not completelyne of the classical problems of the
theory of harmonic functions (theory of potentidespite the simplification, it is difficult to
extend this approach to problems of dynamic or mgpload analysis (Ozawet, al. 2010).

The objective of this paper, therefore, is to pnésdosed-form solution of pavement
responses due to static rectangular loadings ae@as case to wave propagation problems.
In this study, a more flexible and efficient clasditransform integral method is utilized as
opposed to classical potential function method thasePapkovich-Neuber potentials.

3 GENERAL THEORY

A system of rectangular Cartesian coordinakey,(2) is used. By assuming the body forces
to be zero, equilibrium equations may be written as
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where gy, Oy, 0;, Ty, Ty, and 7y, are stresses in an infinitesimal element.
Strain-displacement relationship may be represesgddllows:
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where u, v, and w are displacements in the directions ®f-,y -, and z -axes.
Furthermore, ¢y, &y, and &, are normal strains corresponding to normal stressgs gy,

and g,, while yy,, yxz, and yy, are shear strains corresponding to shear stresggs

Tyz, and 7y, . Boundary conditions for rectangular loads actig a surface of a
semi-infinite medium shown in Figure 1 may be repreged as shown below:

when x<|a| and y<|b| then;

0,(X Y0 ==pz, Txz(X%y0)==px, Ty (%y0)=-py, (3a)

when x>|a| and y>|b| then;

5 (% Y0) =T (%, ¥.0) =Ty (X, y.0) =0 (3b)

Using Lame’s constants, stress-strain relationstag be written as:
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(a) vertical p,(x,y,0) (b) horizontal py(x,y ,0) (c) horizontal py(x, v,0)

Figure 1: Uniformly distributed rectangur loads
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Eis elastic modulus and is Poisson’s ratio. Since in a multilayered systéayer
materials and thicknesses may be different, Eqs(2})) and (4) have to be derived for each
layer. Substituting Eqs (2) and (4) into Eq (1)vN&as equations may, in the absence of body
forces, be obtained as functions of displacementhawn below:

62 62 62 62 62

(A+20) S5+ g+ g+ (A4 )3+ (A f) =2 =0 (62)
aX ay 0z ox oy 0x 0z
ot 9*v 9° 9° 9°

A+ 21) St g+ g+ (A )+ (A p) == =0 (6b)
oy ox 0z 0x dy 0y 0z
o°w ,  9*w_ 9° 9° 9°

A+ 2u) ST+ p S u G (A p) = —+(A+ p) = — =0 (6c)
oz aX oy 0x 0z oy 0z

4 DERIVATION OF THE SOLUTIONS

In order to derive the solutions, it is assumed tha displacement functiona, v, and w
may be represented using the following double trayoetric series in case of vertical loading.
(Note: due to lack of space, derivations for the case of horizontal loads in both x and vy
directions will not be presented in this paper):
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where, U(2), V(z), and W(z) are the unknown displacement functions about the

coordinate z and ¢y and ¢, are Fourier parameters fox and y coordinates,
respectively. Substituting Eq 7 into Eq 6 and r@aging yields:
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where 52 :Ef +E§ and the solutions ofJ (z ,)V(z), and W(z ) are obtained as:

U(2) =Cgef 2 +Cye ¢ 2 + C5ef 22+ Cget 7z (9a)
z -z £z —£7
V(Z)=C16_52+Czegz+csgye +C4Eye +C5Eye Z+C65ye z (9b)
C(X C(x Q(X EX
W(2) = leye_fz _Cady ef? _C3<tegz L Ca feé? +

'3 '3 &y &y 00

Cs(—fz+(/]+3’u)Je{Z+C6[£z+ (A+34) je_‘tz

(A+u) ) éx A+p) ) &

Substituting Eq (9) in Egs (2) and (4) and rearearige relationship between stresses and
coefficients of integration is obtained to givenséer matrix for each layer as:
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Coefficients of integrationC;, C,,

Cz, C4, Cs and Cgare functions ofé, and ¢y

and are determined by using the known boundary itond. After determining the
coefficients of integration, Fourier inverse trasf is performed on Egs (10) to obtain
displacements and stresses as shown below:
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5 APPLICATION TO MULTILAYERED SYSTEM

Extension of the solutions to a multilayered sysfellows the procedure illustrated by Maina
and Matsui (2004), which also utilizes transfer nmafA multilayered system is as shown in
Figure 2. Using layer matrix represented by Eq (il relation between responses on top
and at the bottom of layer may be given as follows:
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Layer 1 hy Youn.g's moduIL.JsE1
Poisson's ratioV;

Young's modquE2

Layer 2
h Poisson's ratioy,

Young's modulusEi
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Figure 2: Model for multilayered elastic system



Uh(éx. &y 0 UM (Ex &y,)
Vi (éx. &y 0) Vi (Ex. &y )
WS (Ex. €y 0) WS (& &y ) (12)
5 i€y 0) oW @&y h)
78 (Ex. €y 0) rOm (6 &401)
o (Ex. &y 0) o (Ex. &y hy)

-0, ok m)

where the superscripﬁ) in Eq (12) represents the layer number. The baynctandition
at the interface of layers and i +1 may be given as follows:
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Using matrices from Eqgs (12) and (13), the relatiop between stresses and strains at the

surface of layer 1 and coefficients of integratadiayer N may be determined.

6 BOUNDARY CONDITION
Applying Fourier transform on the boundary conditaefined by Eq (3) yields:

2sin(agy)sin(bsy )
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with k=123 representing 0y =7y,(z ), 02=7y,(2) , 03=0,(2) , PL=Px .
p2 =py, and p3=p,, where 0,(z=0),7,,(z=0), and 7y,(z=0) at the surface of
layer 1 are known values. When - o for the bottom layerN, all the responses will
approach zero, which implies coefficients of intdgm CSN) :CéN) :CéN) will be zero.
From the known surface conditions, unknown coedfits of integration
Cl(N) :Cle) :CéN) may be determined.

7 EXTENSION TO MULTIPLE LOADING

Consider multiple loads shown in Figure 3. Analyssy be carried out by introducing a local
coordinate system(x,y,z Whose origin is at the center of each load anditia responses

may be determined by using the principle of supgtmm and referencing each load back to
the global axis(X,Y,Z )



X=Xg+X, Y=Yo+Yy, Z=Zg+2 (15)

where (Xgq,Yg,Zg ) is the distance of the origin of local coordinatgstem from the
global coordinate system.

Global coordinat
(000)

» X

Local coordinate
lwiw W VP(XO'YO'O)

v e

Figure 3: Global and local coordinate systems
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P, = 4%N
Loading area
A=900cm’® X
hy =15cm Youn.g's rnlodulgg =5000MPa
v Poisson's ratio v, = 035
7'y Y Y
Young's modulusE, =400MPa P, =245kN 2a=30cm P = 245KkN
h, =35cm Poisson's ratio v, = 035 D Y
v Tt X X
‘ ;
Young's modulusg, = 60MPa b 1— tt l_l2b:30cm 1Y =169cm
Y Poisson’s ratio |, = 940 e .
7 Loading area Loading area,
A=900cm’ A=900cm
(a) Analytical model (b) Rectangulead (c) Circular load

Figure 4: Analytical model together with two lodthpes

8. VALIDATION OF NUMERICAL ANALYSIS

In order to evaluate the viability of the algoritrdeveloped, the 3-layered system shown in
Figure 4 was analyzed considering two shapes odl. Id&at is uniformly distributed
rectangular and circular loads. The analysis ofrdotangular load was performed using the
theory described above and GAMES software was tsahalyze the circular load (Maina
and Matsui, 2004). Surface displacements and sgesghin the multilayered system were
compared. Furthermore, the calculated surface sstes under rectangular load was

compared with the boundary condition (external igoblload) in order to confirm the
accuracy of numerical analysis.
In this case, the center of the uniformly distrdniioad coincided with the center of the



global coordinate systeniX,Y)= (00). The magnitude of the load in the direction of
Z -axis was P, =4%N and in the direction ofY -axis was Py, =24.5kN. The load shapes

are shown in Figures 4(b) and 4(c), where the gglead is 30cmx 30cm and for the area

A of the circular load to be similar to the rectalagload with A=900cm2, its radius was

setto 16 .cm
Results of surface displacement shown in Figure Sfare computed atZ= (Ocm
X=0@m and Y=0~150cm There is good match between results from circaad

rectangular loads. Figure 5(b) shows results dor and 7y,, which were determined at

(X,Y)=(00) and Z=0~150cm There is also good agreement of stresses, wiailuttares
the accuracy of the algorithm that was developdtisiresearch.

The contour plot of surface stress is shown in k&g8(c), which was produced by
considering the symmetry of the load and utilizealyothe positive X ,Y -axes. The
theoretical boundary condition for, within the loaded area X =Y <15 cijn was
0, =-544MPa and o, =0MPa for X =Y >15cm, whereas at the edge of the load
(X =Y =15m) the stress,o, =—-272MPa. Compared to the theoretical boundary condition
values, Figure 6(c) shows some analytical errorth@vicinity (X =Y =14~16cm) of the
load edge X =Y =15 cmwhile very good results were obtained elsewhere.
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Figure 5: Analytical results

9 OBSERVATION AND CONCLUDING REMARKS

In this study, theoretical analysis of a multilaggisystem was successfully derived by using
Cartesian coordinate system. It is important tapout that using this approach, uniform and



non-uniform rectangular loads may be analyzed.

From the worked examples presented, the followibgeovations, mainly on primary
responses, were made:

(1) Software, such as GAMES were developed forpiingpose of determining pavement
primary responses, at any point of interest, duthéoaction of uniformly distributed circular
load. However, the method presented in this pagpeapable of evaluating rectangular loads,
which may not only be uniformly distributed but@lson-uniformly distributed. Rectangular
shaped load is used because it resembles tireriioistpnd the analysis will be more realistic.

(2) There was a very good overall match betweeporeses due to uniform load over a
rectangular area that was analyzed by the algordéweloped in this study and the uniformly
distributed circular load that was analyzed usi®fgMES software.

(3) Although not presented in this paper, significaifferences between circular and
non-circular loads are anticipated when either ipleltloads or non-uniform loads are
analyzed.
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