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ABSTRACT: The dynamic modulus is the main input material property of asphalt mixtures 
for the modern mechanistic-empirical asphalt pavement design methods. The dynamic 
modulus is determined in laboratory by different procedures but in all cases, they require 
sophisticated equipment and well-trained personnel. When these experimental results are not 
available, they could be estimated using different predictive models based on the aggregate 
gradation, volumetric properties of the mixture and binder characteristics. This paper presents 
the application of the Artificial Neural Network (ANN) technique in order to develop a robust 
prediction model of the dynamic modulus of asphalt mixtures. The experimental data used for 
the training and validation processes were collected from different construction projects in 
Argentina. The measured and estimated dynamic modulus results using the ANN model were 
compared and discussed showing that the ANN model developed in this study is promising to 
estimate the dynamic modulus of bituminous mixes for practical applications. 
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1 INTRODUCTION 
 
The dynamic modulus is the main input material property of asphalt mixtures for the modern 
mechanistic-empirical flexible pavements design methods. It determines the distribution of 
stress and strains into the pavement structure and also, it can be correlated with the rutting and 
fatigue cracking behavior of the bituminous layers (NCHRP, 2004).  

The dynamic modulus E* is determined in laboratory by different procedures but in all 
cases, they require sophisticated equipment and well-trained personnel. Currently, few 
jurisdictions in Argentina have the required testing capabilities to experimentally determine 
the dynamic modulus of their asphalt mixtures and other alternatives are needed to obtain this 
property. When these equipments are not available, the dynamic modulus of the asphalt 
mixtures could be estimated with different predictive models developed by different 
researchers and based on the volumetric properties of the mixture, the aggregate gradations 
and the binder characteristics using regression analysis from experimental data.  

A previous work (Martinez & Angelone, 2009) has reviewed three estimation procedures 
considering their advantages and disadvantages in terms of necessary inputs and ease of use. 

This study concluded that, when testing results are not available, reliable first order 
dynamic modulus estimates for asphalt mixtures typically used in Argentina can be obtained 
using any of the predictive procedures considered. However, the predictive capabilities of 
each one could be improved using additional information, changing the functional form of the 
model or calibrating them. 



Thus, in order to develop a more robust predictive model of the dynamic modulus of 
asphalt mixtures, a different point of view was considered at the Road Laboratory of the 
University of Rosario using the Artificial Neural Network (ANN) technique. Such an 
approach has been used successfully in other engineering fields like the analysis of building 
damages, identification of structural systems, behavior of materials, structural optimization 
and performance of building foundations. In road engineering, the technique was used in the 
back calculation of asphalt pavements (Kim, 2001; Meier, 1995; Ceylan et al, 2007), the 
predictions of roughness deterioration (Attoh-Okine, 1994), the estimation of the properties of 
asphalt mixtures (Far et al, 2009; Zeghal, 2008a; Zeghal, 2008b; Lacroix, 2008; Sakhaei Far, 
2009) and subgrade soils (Zeghal y Khogali, 2005).  

This paper presents the application of the Artificial Neural Network (ANN) technique in 
order to develop a robust prediction model of the dynamic modulus of asphalt mixtures. The 
primary advantage of this approach over statistical regression techniques is that the functional 
form of the relationships is not needed a priori and it offers the potential for capturing 
complicated nonlinear relationships between the dynamic modulus and mixtures variables. 
However, the main disadvantage of the ANN approach is the inability to extrapolate results 
when the inputs are outside the range of values used to develop it. The experimental data used 
for the training and validation processes were collected from different construction projects in 
Argentina. The measured and estimated dynamic modulus results using the ANN model are 
compared and discussed. Also, the accuracy of the predictions using the ANN model is 
compared against those obtained with another predictive procedure.  
 
 
2 ARTIFICIAL NEURAL NETWORKS 
 
Artificial neural networks (ANN) are computational systems made of a number of neurons 
that are connected together in a way similar to the architecture of the human brain. This 
system is capable of recognizing, capturing and mapping patterns contained in a set of data 
due to the high interconnections of neurons processing information in parallel. When a 
network has learned the patterns defining the relationship between the input data and output, 
it can be used to predict new conditions. A basic network is composed by three or more layers. 
The first layer contains the input data while the last layer contains the output result. One or 
more layers known as hidden layers are placed between the input and output layers. These 
hidden layers constitute the network’s means of delineating and learning the patterns 
governing the data that the network is presented with. A basic architecture of an ANN with 
three neurons in the input layer, two neurons in the hidden layer and one neuron in the output 
layer is presented in Figure 1. 
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Figure 1: Schematic architecture of an ANN 

 



Presenting a network with facts for which the input and output are known to delineate the 
embedded patterns is an integral part of the ANN modeling process named as learning process. 
In this study, the back propagation learning process has been adopted to train the network 
because it is the most popular process used in many fields of science and engineering. In a 
back propagation learning process, training is accomplished by assigning random connection 
weights to the connections between neurons and calculating the output using the present 
connection weights. Then, the process involves back propagating the error defined as the 
difference between the actual and computed output through the hidden layer. This procedure 
is repeated for all training sets of data until the error is within a certain tolerance. The final 
network with final connection weights is then saved to serve as a prediction model.  

A more detailed description of the ANN technique is out of the purposes of this paper and 
more information could be found in Müller et al., 1995. 

 
 

3 MATERIALS AND PROCEDURES 
 
3.1 Materials 
 
The materials used in this study were cores obtained from 17 different sections of asphalt 
pavements recently built around Rosario in the Littoral region of Argentina. In these sections, 
33 locations were selected where asphalt concretes with different formulations were used for 
the surface and the base layers in order to obtain 51 different asphalt mixtures conventionally 
used in Argentina for surface and base layers of asphalt pavements. All of these mixtures can 
be classified as dense graded asphalt concretes with conventional binders. At each location, 
six cores were taken. Two of these cores were used for the determination of the dynamic 
modulus as is described later. The other four cores were used in the laboratory for the 
determination of the volumetric properties of each mixture, the properties of the recovered 
binders (viscosity at different temperatures, penetration and softening point) and the aggregate 
gradation. A database containing the information of the 51 mixtures was elaborated covering 
a wide range of properties used as inputs for the ANN predictive model. Table 1 presents a 
summary of the descriptive statistics calculated from the database, for the parameters 
considered in it. 
 
Table 1: Descriptive Statistics of the mixtures and binder data 
 

Values in the database Variable Maximum Minimum Average Std. Dev. 
Viscosity 60 °C (Poises) 10200 2737 6605 1918 

Pen 25 °C (1/10 mm) 62.9 54.0 59.5 2.2 Asphalt Binder 
Softening Point (°C) 67.7 32.3 43.0 8.3 

Vb (%) 14.1 10.0 12.5 0.9 
Va (%) 10.0 1.9 4.1 1.6 

VMA % 22.1 13.3 16.7 1.6 Volumetric Properties 

VFA % 86.8 54.7 75.6 7.0 
% passing #3/4 100.0 90.7 97.0 2.4 
% passing #3/8 84.3 59.7 75.3 5.7 
% passing #4 68.1 46.7 59.4 4.9 
% passing #8 51.6 34.6 43.1 4.0 

% passing #40 29.7 18.0 24.5 2.6 

Aggregate Gradation 

% passing #200 9.0 4.5 7.3 0.9 
with 
Vb : Effective bitumen content by volume 



Va : Air Voids content 
VMA : Voids in the mineral aggregate 
VFA : Voids filled with asphalt 
 
3.2 Dynamic Modulus Determination 
 
The Dynamic Modulus E* of the cores was experimentally measured with the Indirect tension 
(IDT) mode with sinusoidal loadings following a procedure very similar as it was developed 
by Kim et al., 2004 using the linear viscoelastic solution. These authors concluded that the 
IDT testing of cores seems to be more appropriate for the evaluation of existing pavements 
given that a typical asphalt layer thickness is less than 100 mm and that coring is the most 
effective method of obtaining specimens from actual pavements. Also, the dynamic modulus 
determined from the IDT test using this linear viscoelastic solution is statistically the same as 
the one measured from the axial compression test. 

Assuming the plane stress state, the linear viscoelastic solution for the dynamic modulus of 
an asphalt mixture under the IDT mode results: 
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where 
E* : dynamic modulus 
P : amplitude of the applied sinusoidal load 
Δh : amplitude of the resulting horizontal deformation 
t : thickness of specimen 
K1, K2 : coefficients depending on the specimen diameter and gauge length 
μ : Poisson’s ratio 
 

Testing was performed using a servo-pneumatic machine, developed at the Road 
Laboratory of the University of Rosario, using a 5000 N load cell, which is capable of 
applying load over a range of frequencies ranging from 0.01 Hz to 5 Hz. A proportional valve 
controlled by the computer is used to generate the sinusoidal loadings at the required 
frequency. The test frame is enclosed into a temperature chamber. The temperature control 
system is able to achieve the required testing temperatures ranging from 0 °C to 50 °C. The 
data acquisition system was also developed at the Road Laboratory of the University of 
Rosario and is capable of measuring and recording data from three channels simultaneously: 
two for horizontal displacements and one for the load cell. In order to increase the simplicity 
of the test, only horizontal deformations were measured and the Poisson’s ratio was adopted 
as a function of the test temperature. The horizontal deformations were measured using 
LVDTs mounted on each of the specimen faces using a 35 mm gauge length. The applied 
load and the average horizontal deformation were calculated fitting sinusoidal functions to the 
measured experimental data. For the adopted gauge length and for specimens with 100 mm 
diameter, the coefficients K1 and K2 result: K1 = 0.188 and K2 = 0.595. The cores used for 
the determination of the dynamic modulus were trimmed to the test thickness approximately 
equal to 50 mm using a laboratory concrete saw. In this study, four temperatures (10, 20, 30 
and 40 °C) and five frequencies (4, 2, 1, 0.5 and 0.25 Hz) were used. Then, the average of the 
experimental values of the two samples coming from the same location was considered in 
order to build a database containing 1020 experimental dynamic modulus values (51 mixtures, 
4 temperatures and 5 frequencies). 
 
 



4 DEVELOPMENT OF THE ANN MODEL 
 
The architecture of the network is defined by the number of layers and neurons in each layer. 
In general, a great number of processes can be modeled with one or two hidden layers and 
then, only one hidden layer was selected for the development of this ANN predictive model.  

Thus, a three layer feedforward neural network with supervised learning was trained with 
the experimental data. The available data has been randomly divided in two separated sets of 
values: the Training Pattern containing 80 % of the available data and the Validation Pattern 
with the remaining 20% of the data. As the dynamic modulus could vary in a wide range of 
values depending on the test temperature and the frequency (from 100 to 20000 MPa for 
conventional mixtures), E* values were considered in logarithmic values. The neural network 
expects any input and output value to be between 0 and 1. Therefore the pattern sets must be 
normalized before being processed by the network and this normalization was calculated as: 
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with 
i : input or output value 
low : minimum possible value 
high : maximum possible value 
N(i) : normalized input or output value 

 
Regarding the number of neurons in each layer, the input layer has 15 neurons: 13 neurons 

for the variables cited in Table 1 and 2 additional neurons for the testing temperature and the 
frequency. The output layer has only one neuron corresponding to the log E* value. The 
number of neurons in the hidden layer was analyzed in order to arrive at a robust network. 
The analysis consisted of training ANN models with varying number of neurons in the hidden 
layer and the effect of the number of hidden neurons on the accuracy of the network was 
measured by the average deviation AvDev between real and estimated values. This average 
deviation is calculated as: 
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where 
AvDev : average deviation 
Oi : real output value (normalized) 
ONETi : estimated output value (normalized) 
N : number of values in the pattern 

 
The effect of the number of hidden neurons in the single hidden layer on the average 

deviation using the training pattern is shown in Figure 2. 
This figure shows that the number of neurons in the hidden layer plays a major role in the 

accuracy of the network. Further, the network with 13 neurons in the single hidden layer was 
found to provide the best accuracy with an average deviation approximately equal to 0.001, 
which was considered acceptable. Increasing the number of neurons in the hidden layer does 
not improve significantly the predictive quality of the model. Finally, only one hidden layer 
with 13 neurons was adopted for the development of this ANN predictive model. 
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Figure 2: Evolution of the average deviation with the number of hidden neurons 
 
5 OBTAINED RESULTS 
 
5.1 Accuracy of the ANN model 
 
The developed ANN model was trained and validated using a free software available on 
Internet that allows the user to import data from other spreadsheets, modify some control 
parameters and display real and estimated results in a comparative manner (Runtime Software, 
2009). 

In order to evaluate the accuracy of the predictions, the relative errors between measured 
(real) and estimated values has been calculated as: 

 
( )

i

ii

*E
NET*E*EErrorlativeRe −

=  (4) 

with 
E*i : measured value of E* 
E*NETi : ANN estimated value of E*  

 
Figure 3(a) shows the frequency distribution of these relative errors for all the data in the 

training pattern while Figure 3(b) shows the same distribution for the validation pattern. As 
can be observed, approximately 85 % of the estimated values have a relative error smaller 
than 30 % for the training pattern while 80 % of the estimated values have a relative error 
smaller than the same limit for the validation pattern. These errors were considered very 
acceptable since it was observed that replicate samples tested in the laboratory might exhibit a 
difference in the order of 20 to 30 %. 
 
5.2 Adequacy of the ANN model 
 
Once the ANN model was trained, it was implemented on an Excel spreadsheet where, for a 
given set of inputs, the resulting E* value is automatically calculated. Then, the network was 
used to check trends related to variations in testing temperature and frequency. The 
predictions given by the ANN model were checked against trends established in the literature 
for these two variables using the characteristics of a novel asphalt mixture that the ANN 
model did no see before.  
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Figure 3: Frequency distribution of the relative errors. (a) for the Training Pattern (b) for the 
Validation Pattern 
 

The variables for this mixture are listed in Table 2. Also, temperatures and frequencies 
were different than those used in the experimental determination of E*. The ANN estimated 
E* values are shown in Figure 4.  
 
Table 2: Variables of the novel mixture 
 

Viscosity 60 °C (Poises) 4210  Gradation 
Pen 25 °C (1/10 mm) 53.0  % passing #3/4 100.0 
Softening Point (°C) 53.1  % passing #3/8 75.6 

Vb (%) 12.5  % passing #4 62.9 
Va (%) 4.1  % passing #8 46.5 

VMA % 16.5  % passing #40 21.3 
VFA % 75.7  % passing #200 9.6 

 

10

100

1000

10000

100000

0.1 1 10
Frequency (Hz)

Es
tim

at
ed

 E
* (

MP
a) 13 °C

29 °C
21 °C

37 °C

 
Figure 4: ANN estimated E* values 
 

It is clear that the ANN model is capable of reproducing the known effect of temperature 
and frequency because at all frequencies, a decrease in the temperature results in an increase 
in the dynamic modulus and, at any temperature, and increase in frequency results in an 
increase in the dynamic modulus. 
 
5.3 Comparisons with other predictive model 
 
The ability of the ANN model to predict sufficiently accurate and reasonable dynamic 



modulus estimates adequate for use in mechanistic-empirical pavement design procedures 
was determined by comparing ANN estimations and predicted values using another well 
accepted prediction model (the Witczak model) included in the Mechanistic Empirical 
Pavement Design Guide developed under the project NCHRP 1-37A (NCHRP 2004). The 
model is formulated as: 
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with 
E* : dynamic modulus in 105 psi 
η : bitumen viscosity at the test temperature in 106 Poises 
f : loading frequency in Hz 
p34 : cumulative percent retained on the #3/4 sieve 
p38 : cumulative percent retained on the #3/8 sieve 
p4 : cumulative percent retained on the #4 sieve 
p200 : percent passing the #200 sieve. 
 

For the comparisons, the dynamic modulus values in psi were converted to MPa. Figure 5 
shows the comparison between measured and estimated E* values using the ANN model 
while Figure 6 shows the same comparison using the predicted values with the Witczak model, 
[(a) in logarithmic space; (b) in arithmetic space]. 

To evaluate the performance of the predictive procedures, the correlation of the measured 
and predicted values was assessed using goodness-of-fit statistics according to subjective 
criteria proposed by Witczak et al., 2002, and shown in Table 3. The statistics include 
correlation coefficient, R2 and Se/Sy (standard error of estimate values/standard deviation of 
measured values). Table 4 presents the evaluation of both predictive procedures according to 
these criteria. 
 
Table 3: Criteria for Goodness-of-Fit Statistical Parameters 
 

Criteria R2 Se/Sy 
Excellent ≥ 0.90 ≤ 0.35 
Good 0.70 – 0.89 0.36 – 0.55 
Fair 0.40 – 0.69 0.56 – 0.75 
Poor 0.20 – 0.39 0.76 – 0.89 
Very Poor ≤ 0.19 ≥ 0.90 

 
The ANN model has an excellent correlation to the measured dynamic modulus values and 

the goodness-of-fit statistics show an excellent performance, better than the performance of 
the predictions with the Witczak model. The predicted values using the ANN model are in 
excellent agreement for the full range of E* values measured for both, the training and the 
validation patterns. However, the Witczak model is in good agreement for medium and high 
values of the dynamic modulus but the lower modulus values are overestimated.  

 
Based on the obtained results, it could be concluded that when testing results are not 

available, reliable first order dynamic modulus estimates for mixtures typical to Argentina can 
be obtained using the ANN model developed in this study. 
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Figure 5: Comparison of E* values using the ANN model 
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Figure 6: Comparison of E* values using the Witczak model 
 
Table 4: Goodness-of-Fit Statistics for the Predictive Procedures 
 

Pattern Space Statistics ANN model Witczak model 
R2 - Se/Sy 0.92 – 0.28 0.78 – 0.37 Arithmetic  Evaluation Excellent/Excellent Good/Good 
R2 - Se/Sy 0.97 – 0.16 0.90 – 0.20 Training 

Logarithmic  Evaluation Excellent/Excellent Excellent/Excellent 
R2 - Se/Sy 0.90 – 0.34 0.72 – 0.43 Arithmetic  Evaluation Excellent/Excellent Good/Good 
R2 - Se/Sy 0.97 – 0.18 0.87 – 0.23 Validation 

Logarithmic  Evaluation Excellent/Excellent Good/Excellent 
 
 
6 CONCLUSIONS 
 
The dynamic modulus is the main input material property of asphalt mixtures for the modern 
mechanistic-empirical flexible pavements design methods. However, the dynamic modulus 
test is complex and time consuming. In Argentina, there are only few laboratories with the 
required testing capabilities and human resources to perform such a test. This paper presented 
the development of a predictive dynamic modulus model based on the artificial neural 



network (ANN) technique. The results obtained in this study showed that the model has the 
capability of learning trends observed in laboratory testing of asphalt concrete and 
satisfactorily predicting the dynamic modulus of bituminous materials. The ANN model was 
found to perform better than the empirical predictive equation adopted in the Mechanistic 
Empirical Pavement Design Guide developed under the project NCHRP 1-37A. Finally, when 
testing results are not available, reliable first order dynamic modulus estimates for asphalt 
mixtures typically used in Argentina for practical purposes in mechanistic empirical pavement 
design procedures, can be obtained using the ANN model developed in this study. 
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